#### PULSED POWER SYSTEM 脈衝功率系統



**Po-Yu Chang** 

#### Institute of Space and Plasma Sciences, National Cheng Kung University

2023 Fall Semester

Tuesday 9:10-12:00

Lecture 1

#### http://capst.ncku.edu.tw/PGS/index.php/teaching/

**Online courses:** 

https://nckucc.webex.com/nckucc/j.php?MTID=md577c3633c5970f80cbc9e8 21927e016

<sup>2023/9/5</sup> updated 1

### Grading



- Weekly presentations 30 %
  - Class review.
- Final presentations 70 %
  - Design of a pulsed-power system 35 %.
  - Applications of pulsed-power system 35 %.

• No class on 10/31!!!





- Foundations of pulsed power technology, by Jane Lehr & Pralhad Ron
- Pulsed power systems, by H. Bluhm
- Pulsed power, by Gennady A. Mesyats
- J. C. Martin on pulsed power, edited by T. H. Martin, A. H. Guenther, and M. Kristiansen
- Pulse power formulary, by Richard J. Adler
- Circuit analysis, by Cunningham and Stuller





- Introduction to pulsed-power system
- Review of circuit analysis
- Static and dynamic breakdown strength of dielectric materials
  - Gas Townsend discharge (avalanche breakdown), Paschen's curve
  - Liquid
  - Solid
- Energy storage
  - Pulse discharge capacitors
  - Marx generators
  - Inductive energy storage

#### Outlines

- Switches
  - Closing switches
  - Opening switches
- Pulse-forming lines
  - Blumlein line
  - Pulse-forming network
  - Pulse compressor

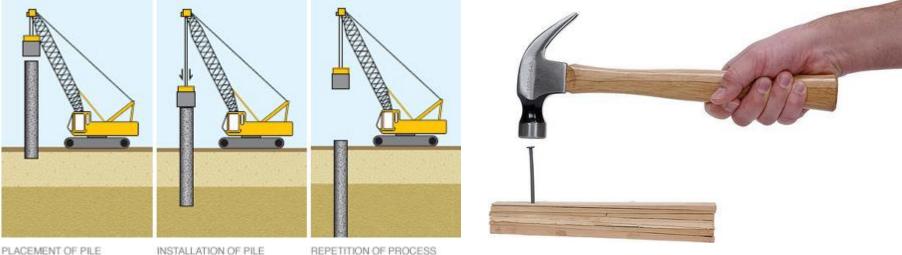
- Pulse transmission and transformation
  - Self-magnetic insulation
  - Pulse transformer
  - Voltage multiplier
  - H-bridge pulse generator
  - Pulse-width modulation (PWM)
  - Fast high-voltage pulse generator

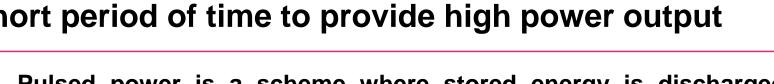
#### Outlines



- Power and voltage adding
  - Marx generator
  - LC generator
  - Line pulse transformers
  - Induction voltage adder (IVA)
  - Linear induction accelerator (LIA)
  - Linear transformer driver (LTD)
- Diagnostics
  - Voltage measurement
  - Current measurement
- Applications of pulsed-power system




#### Introduction to pulsed-power system


- Review of circuit analysis
- Static and dynamic breakdown strength of dielectric materials
  - Gas Townsend discharge (avalanche breakdown), Paschen's curve
  - Liquid
  - Solid
- Energy storage
  - Pulse discharge capacitors
  - Marx generators
  - Inductive energy storage

#### Pulsed-power system release the stored energy in a short period of time to provide high power output

- Pulsed power is a scheme where stored energy is discharged as • electrical energy into a load in a short pulse or short pulses with a controllable repetition rate.
- Driven piles prefabricated steel, wood or concrete piles are driven • into the ground using impact hammers
  - **Driven piles**

Hammer







REPETITION OF PROCESS

#### Example of short pulses with a controllable repetition rate





### In general, a pulsed-power system provides a power in the order of 1 GW

• The highest energy and power that have been achieved in a simgle pulse are in the order of 100 MJ & few hundreds TW, respectively.

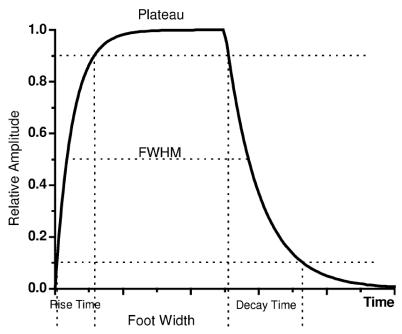
|                  | General cases  | Our system |
|------------------|----------------|------------|
| Energy per pulse | 1 ~ 10 MJ      | 1 kJ       |
| Peak power       | 1 MW ~ 100 TW  | 0.6 GW     |
| Peak voltage     | 1 kV ~ 10 MV   | 20 kV      |
| Peak current     | 1 kA ~ 10 MA   | 135 kA     |
| Pulse width      | 0.1 ns ~ 10 us | 1 us       |

### **Physiological Effects of an Electric Shock**

| Effects of Electrical Current* on the Body <sup>3</sup> |                                                                                                                                                                                                     |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Current                                                 | Reaction                                                                                                                                                                                            |  |
| 1 milliamp                                              | Just a faint tingle.                                                                                                                                                                                |  |
| 5 milliamps                                             | Slight shock felt. Disturbing, but not painful. Most people can "let go."<br>However, strong involuntary movements can cause injuries.                                                              |  |
| 6–25 milliamps (women)†<br>9–30 milliamps (men)         | Painful shock. Muscular control is lost. This is the range where "freezing<br>currents" start. It may not be possible to "let go."                                                                  |  |
| 50–150 milliamps                                        | Extremely painful shock, respiratory arrest (breathing stops), severe muscle contractions. Flexor muscles may cause holding on; extensor muscles may cause intense pushing away. Death is possible. |  |
| 1,000–4,300 milliamps<br>(1–4.3 amps)                   | Ventricular fibrillation (heart pumping action not rhythmic) occurs. Muscles contract; nerve damage occurs. Death is likely.                                                                        |  |
| <b>10,000 milliamps</b><br>(10 amps)                    | Cardiac arrest and severe burns occur. Death is probable.                                                                                                                                           |  |
| <b>15,000 milliamps</b><br>(15 amps)                    | Lowest overcurrent at which a typical fuse or circuit breaker opens a circuit!                                                                                                                      |  |

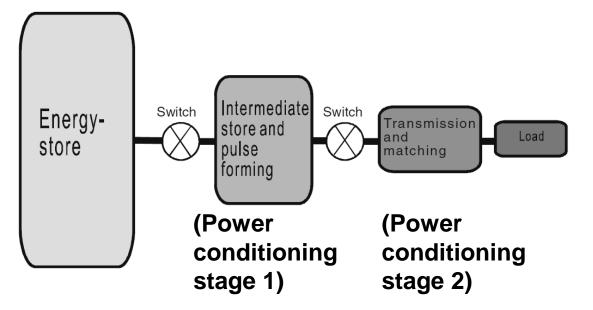
### Electric shock victims suffering from ventricular fibrillation will die if they do not receive prompt, emergency medical attention

### A pulse is characterized by its shapes


- The shape of a pulse is characterized by:
  - Rise time: from 10 % to 90 % of the plateau
  - Fall time: from 90 % to 10 % of the plateau

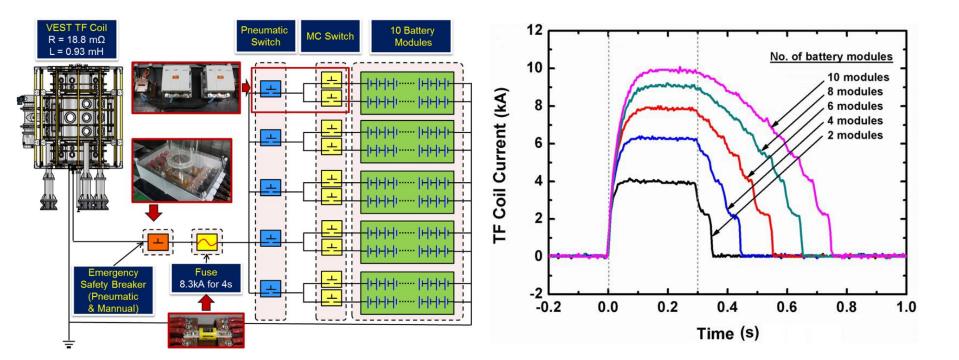
(Rise & fall time depend on the evolution of the "load impedance," which in most cases varies with time.

- Duration:
  - FWHM
  - Width of 90% of


the peak amplitude

 Flatness of the plateau region: important for some applications such as for driving a Pockel's cell.




### A pulsed-power system has an energy bank that is charged slowly and store the energy for some time

- A generator scheme for the production of high-power electrical pulses is always based on an energy store that is charged slowly at a relatively low charging power and is discharged rapidly by activating a switch.
- To achieve the desired power magnification factor and to shape the pulse, the above process can be repeated several time.



 The energy can be stored either chemically (battery), mechanically, or electrically.

#### Batteries can be used for energy storage



B.K. Jung, etc., Fusion Eng. Design 88, 1597 (2013) Chung K. J. et al, Plasma Sci. Technol. 15, 244 (2013)

#### A flywheel can store energy mechanically

• Mechanical energy: 
$$E_{kin} = \frac{1}{2}\theta\omega^2$$
  
• For a massive cylinder:  
 $\theta = \frac{1}{2}Mr^2 \implies E_{kin} = \frac{1}{2}\left(\frac{1}{2}Mr^2\right)\omega^2$   
• Stored energy density:  
 $E_M = \frac{E_{kin}}{M} = \frac{1}{4}r^2\omega^2$   
• The ultimate energy density is limited by the tensile strength of the material used to construct the flywheel.  
 $\Sigma \sim \rho \omega_{max}^2 r^2$   
• For a AISI 302 stainless steel cylinder with a radius of 1 m:

$$\Sigma = 860 \text{MPa}$$
 $\rho = 8190 \text{ kg}/m^3$ 
 $\omega_{\text{max}} \sim 300 (\text{sec}^{-1})$ 
 $E_M \sim 2 \times 10^4 J/\text{kg} \sim 1.6 \times 10^8 J/m^3$ 

 The problem with mechanical storage is to release the energy in a sufficiently short time. Several electrical compression stages are needed in combination with the mechanical storage to achieve the desired power level.

NG KUN

# Electrical energy can be stored either capacitively in an electric field or inductively in a magnetic field

- Electric field:  $E_e = \frac{1}{2} \epsilon_r \epsilon_o E^2$ 
  - Oilimpregnated paper:  $\epsilon_r = 6$   $E_{\text{break}} = 0.78 \times 10^8 V/m$

$$E_e = \frac{1}{2} \times 6 \times 8.85 \times 10^{-12} \times (0.78 \times 10^8)^2 \sim 160 \text{ kJ}/m^3$$

- With the finite packing density

$$E_e' = \frac{1}{2} \times E_e \sim 8 \times 10^4 \, J/m^3$$

Electrode @ V Dielectric Electrode @ V=0

# Electrical energy can be stored either capacitively in an electric field or inductively in a magnetic field

- Magnetic field:  $E_B = \frac{1}{2} \frac{B^2}{\mu_r \mu_o}$ 
  - The maximum energy density is limited by the onset of melting at the conductor surface or by the mechanical strength of the storage inductor.

**T** : Surface temperature

form of the pulse

 $\theta$  : A factor depending on the

 $P_R \leq \Sigma$ 

- Coil heating: 
$$c_{\nu}\rho T = \frac{1}{2\mu_0}B^2\theta \sim \frac{B^2}{2\mu_0}$$
  $c_{\nu}$ : Heat capacitor per unit mass  $\rho$ : Mass density

$$B \times l = \mu_0 N I$$
$$P = I^2 R \sim B^2 R$$

$$B = \mu_0 n I \sim I$$

- Copper: 
$$c_v = 0.385 J/g - k$$

$$T_{\text{melting}} = 1085^{\circ}C$$

$$P = 8960 \text{ kg}/m^3$$

$$B \sim 100 \text{ T}$$

$$E_{copper} = 70 MPa$$

– The coil needs to hold the magnetic pressure:

*B*~13 T

# Electrical energy can be stored either capacitively in an electric field or inductively in a magnetic field

- Magnetic field:  $E_B = \frac{1}{2} \frac{B^2}{\mu_r \mu_o}$ 
  - The maximum energy density is limited by the onset of melting at the conductor surface or by the mechanical strength of the storage inductor.

- Coil heating: 
$$c_v \rho T = \frac{1}{2\mu_0} B^2 \theta \sim \frac{B^2}{2\mu_0}$$
  $c_v$ : Heat capacitor per unit mass  $\rho$ : Mass density

 $P = I^2 R \sim B^2 R$ 

$$B \times l = \mu_0 N I$$

$$B = \mu_0 n I \sim I$$

- Copper: 
$$c_v = 0.385 J/g - k$$
  
 $T_{\text{melting}} = 1085^o C$ 

 $\rho = 8960 \, \text{kg}/m^3$ 

 $\Sigma_{\rm copper} = 70 {\rm MPa}$ 

– The coil needs to hold the magnetic pressure:

- *B*~100 T

 $\frac{B^2}{2\mu_0} = P_B \leq \Sigma$ 

**T** : Surface temperature

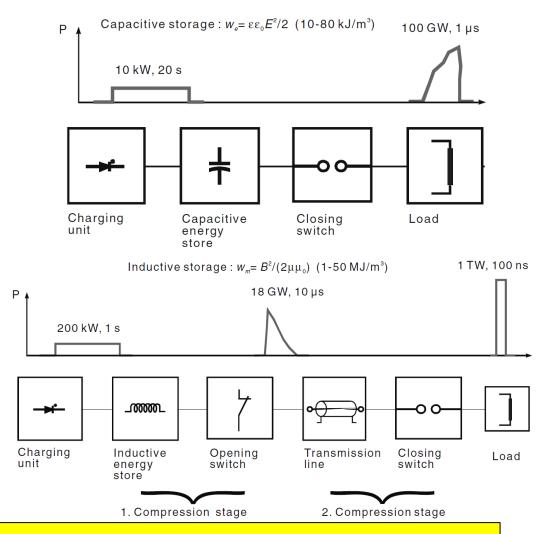
form of the pulse

 $\theta$  : A factor depending on the

 $B \sim 13 \text{ T} \implies E_B \sim 7 \times 10^7 \text{ J/m}^3$ 

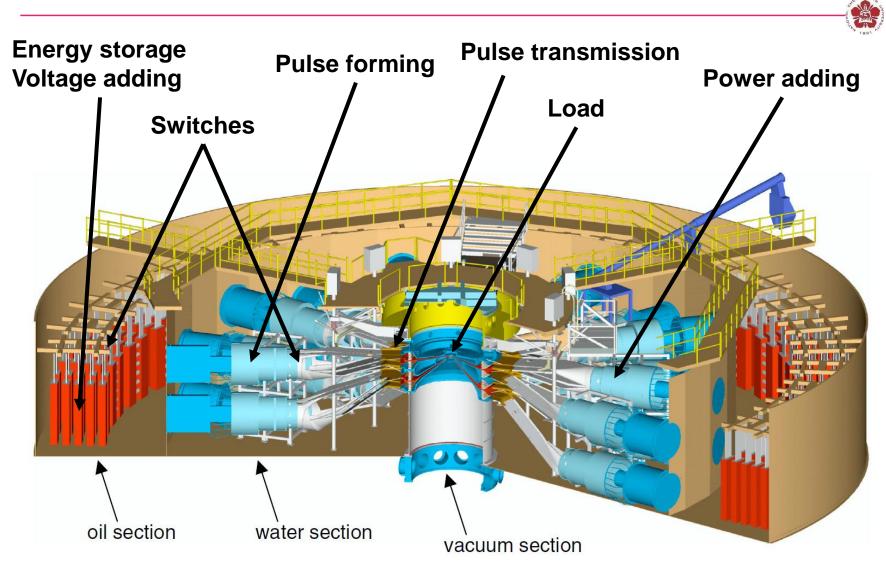
#### More energy can be stored in a magnetic field

| Mechanical Energy                    | Electrical energy                  | Magnetic energy                    |
|--------------------------------------|------------------------------------|------------------------------------|
| 1.6x10 <sup>8</sup> J/m <sup>3</sup> | 8x10 <sup>4</sup> J/m <sup>3</sup> | 7x10 <sup>7</sup> J/m <sup>3</sup> |


- The energy density stored in a magnetic field can be about 2~3 orders of magnitude higher than that storable in a electric field!
- Capacitive storage:
  - Requires one or more closing switches which remain open during charging and hold the charging voltage.
  - Power multiplication is done by current amplification.
- Inductive storage:
  - Requires an opening switch which is closed during charge-up, carrying a large current at this stage.
  - Power multiplication is done by voltage amplification.
- Opening switches are harder to operate then closing switches. They are generally slower leading to a lower power output.

#### It is more complicated to use inductive storage

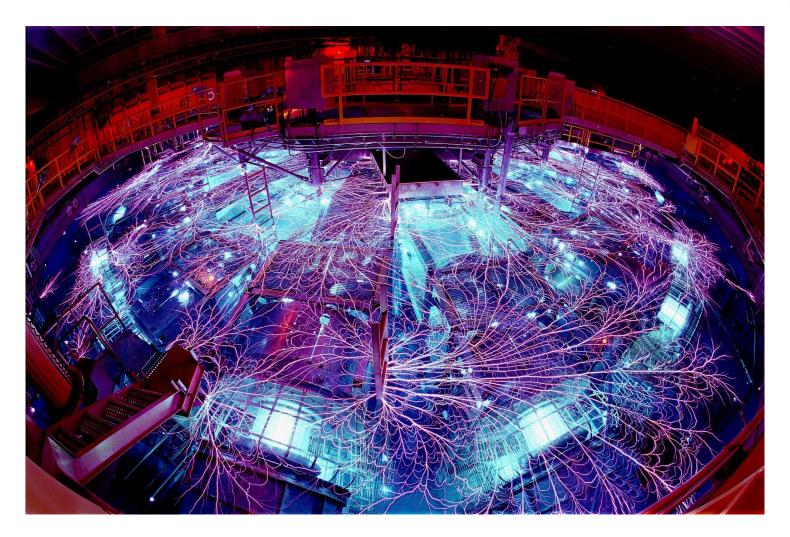
Capacitive storage:


Inductive storage:

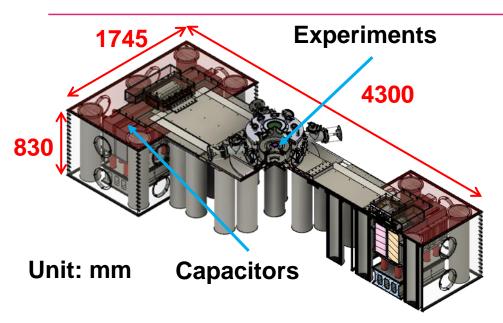
•

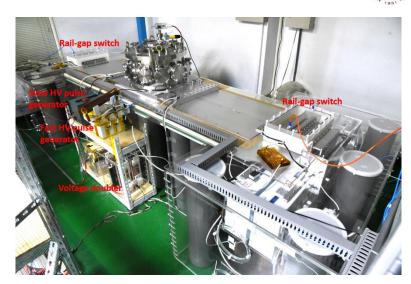


Capacitive storage is more common and easier to operate.

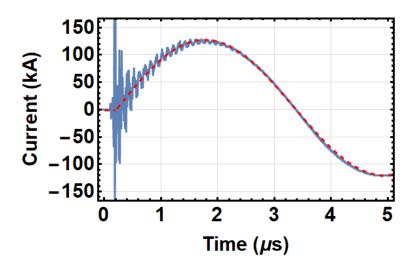

### A pulsed power machine at Sandia National Laboratories delivers a 20 MA, 3 MV, and 55-TW pulse




W. A. Stygar et al. Phys. Rev. ST Accel. Beams 12, 120401 (2009) 21


#### Arcing may happen during the discharge





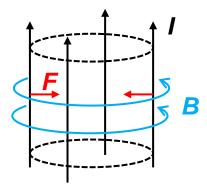

### The EUV light source will be developed using the pulsed-power system we built from scratch

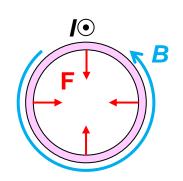




| Capacitance (µF)                  | 5              |        |
|-----------------------------------|----------------|--------|
| V <sub>charge</sub> (kV)          | 20             | (50)   |
| Energy (kJ)                       | 1              | (6.25) |
| Inductance (nH)                   | <b>204</b> ± 4 | l .    |
| Rise time<br>(quarter period, ns) | 1592 <u>+</u>  | 3      |
| I <sub>peak</sub> (kA)            | 135 ± 1        | (~340) |

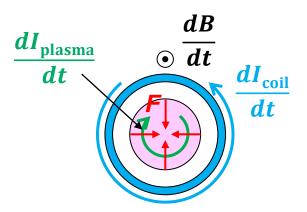



#### Discharge test in Pulsed-Power Generator for Space Science (PGS) laboratory

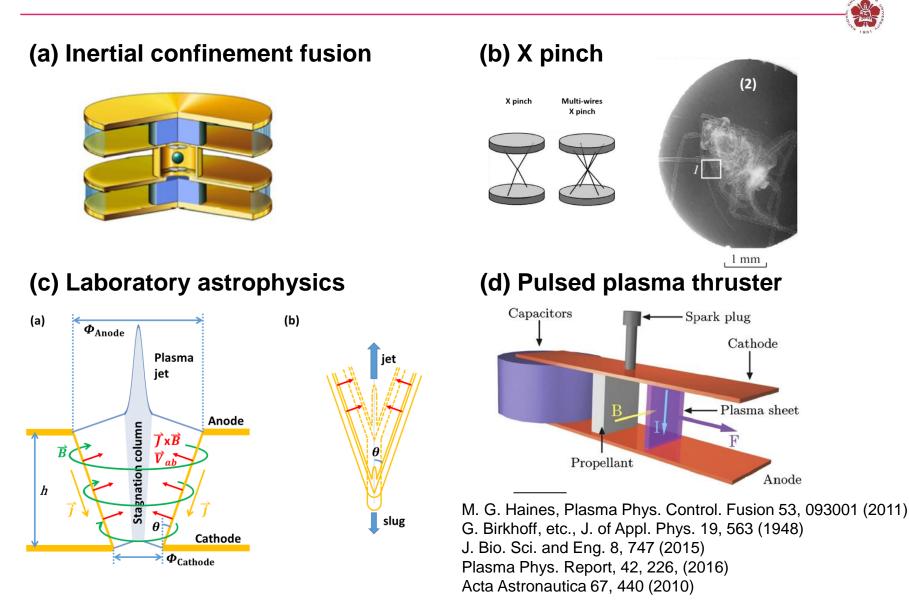





#### Plasma can be compressed by using jxB force

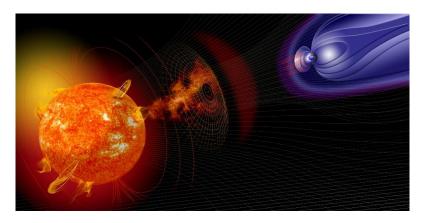

• Z pinches



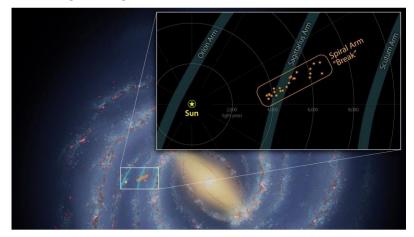



Theta pinches

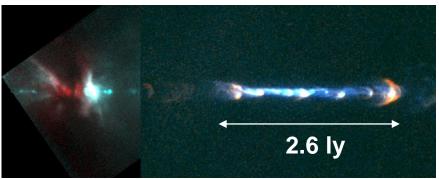





### There are multiple applications using pulsed power machine




### The pulsed-power system can be used to study laboratory astrophysics and space sciences


Solar wind



Milky way's spiral arms



Plasma jets e.g., Herbig-Haro object 111

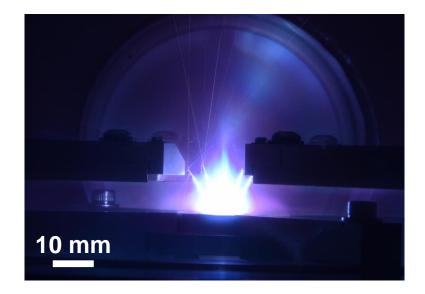


- https://www.nasa.gov/mission\_pages/sunearth/spaceweather/index.html
- Jet Propulsion Laboratory [NASA/JPL] Astronomers Find a 'Break' in One of the Milky Way's Spiral Arms (Aug 17, 2021)
- B. Reipurth and J. BallyAnnu, Herbig-Haro Flows: Probes of Early Stellar Evolution. Rev. Astron. Astrophys., 39:403-455, September 2001

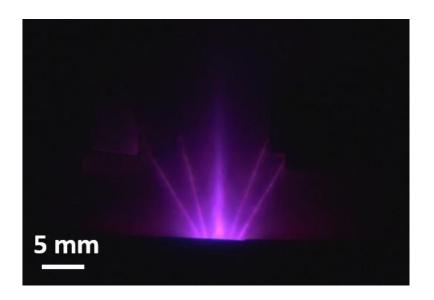
#### The conical-wire array we used in our experiments







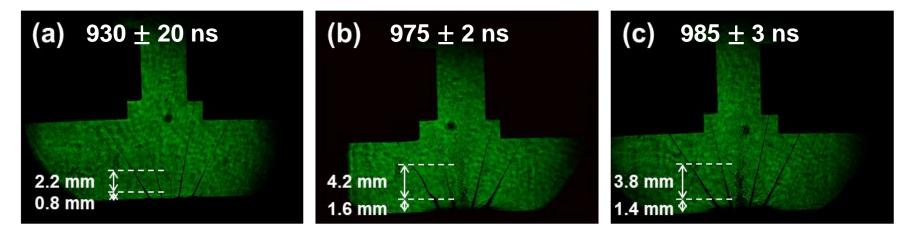

- Material : Tungsten
- Number of wires : 4
- Diameter : 0.02 mm



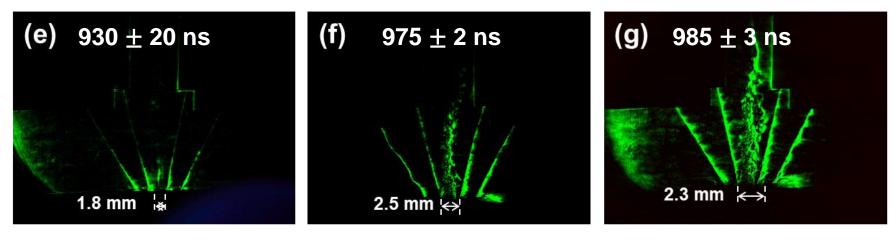

### Plasma jets were captured by time-integrated camera in the visible light

 One layer of cellophane with 8 % transmission.



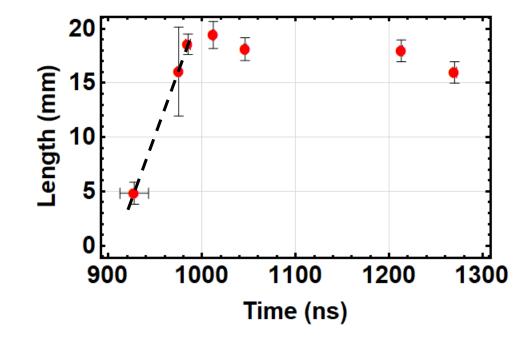

Three layers of cellophane with 1 % transmission.




 Both images were taken by using Nikon D750 camera with D/# equals to 22 and ISO= 50 (effective). Exposure times were both 30 sec for being synchronized with the driver.

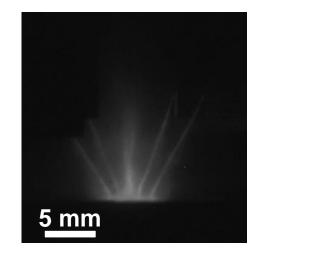
### Time-resolved images show how the plasma plume was generated

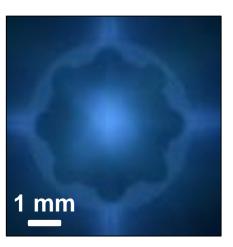
• Shadowgraph images:

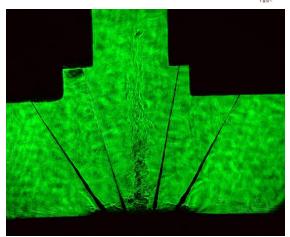


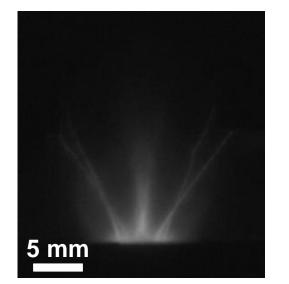

Schlieren images:

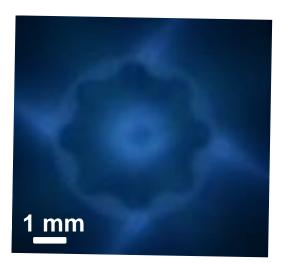


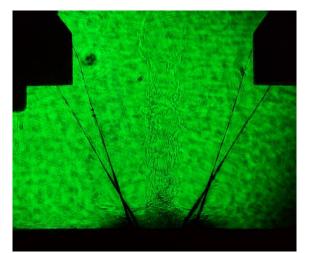

#### A speed of 170 $\pm$ 70 km/sec was estimated



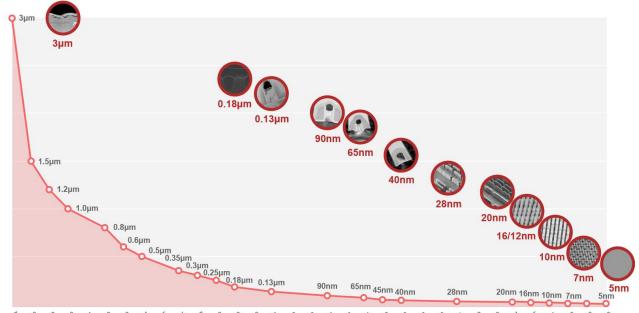


#### A "tornado" is generated by the twisted conical-wire array









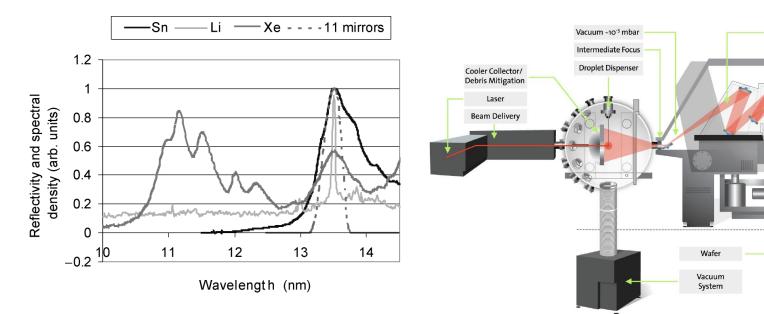



# Ultraviolet lithography (EUVL) is one of the key technologies in semiconductor manufacturing nowadays

• The process technology of Taiwan Semiconductor Manufacturing Company Limited (TSMC):



- Optical diffraction needs to be taken into account.
- Shorter wavelength is preferred.
  - Light source with a center wavelength of 13.5 nm is used.


https://www.tsmc.com/chinese/dedicatedFoundry/technology/logic.htm 33

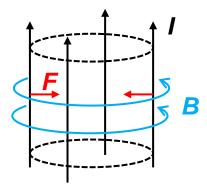
### EUV light is generated from laser-produced plasma (LPP)

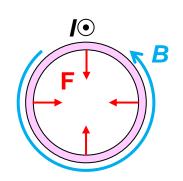


Multilayered Mirror Optics

Reticle

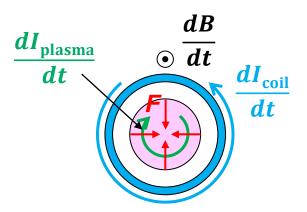



- $\lambda = 13.5 \text{ nm} \pm 1\%$  is required.
- At T=35-40 eV (~450,000 K), ٠ in-band emission occurs.
- Xenon:
  - $4p^{6}4d^{8} \rightarrow 4p^{6}4d^{7}5p$ from single ion stage Xe<sup>10+</sup>
  - UTA @ 11 nm

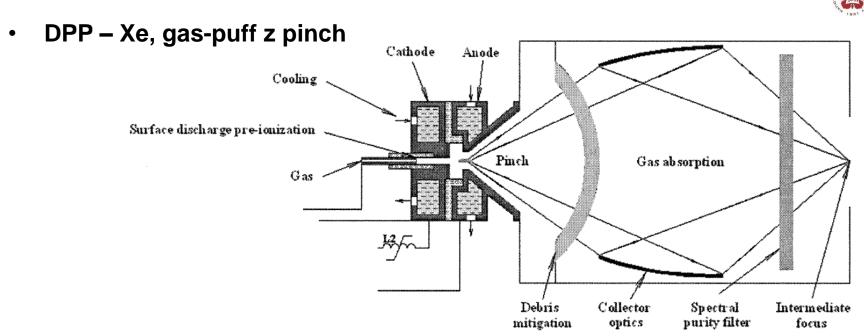

- Tin:
  - $4p^{6}4d^{N} \rightarrow 4p^{5}4d^{N+1} + 4p^{6}4d^{N-1}4f$  $(1 \le N \le 6)$  in ions ranging from Sn<sup>8+</sup> to Sn<sup>12+</sup>
  - UTA @ 13.5 nm
  - UTA: unresolved transition array
- V. Bakshi, EUV sources for lithography

R. S. Abhari, etc., J. Micro/Nanolithography, MEMS, and MOEMS, 11, 021114 (2012)

#### Plasma can be compressed by using jxB force


• Z pinches





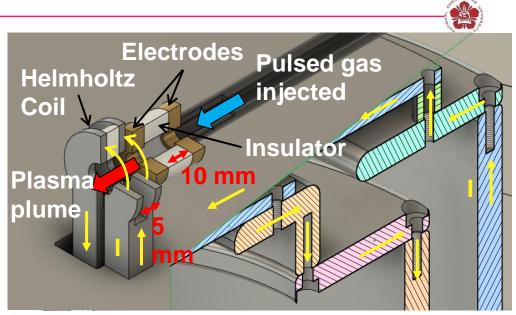

Theta pinches





## Discharge produced plasma (DPP) can generate EUV light for EUV lithography

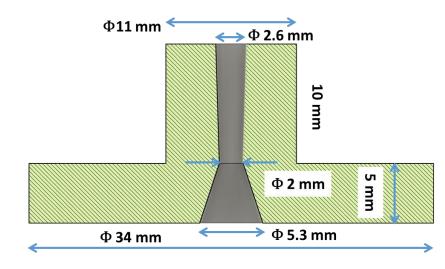


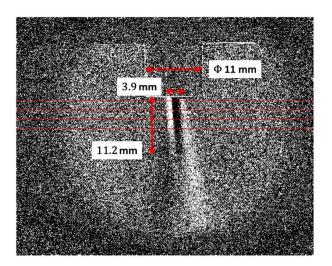

• Electrodes are damaged significantly due to the heat and sputtering by ions.

|      | Laser-produced plasma (LPP)  | Discharge-produced plasma (DPP)                  |
|------|------------------------------|--------------------------------------------------|
| Pros | Commercial system available. | High conversion efficiency.                      |
| Cons | Low conversion efficiency.   | Short system life time due to electrode erosion. |

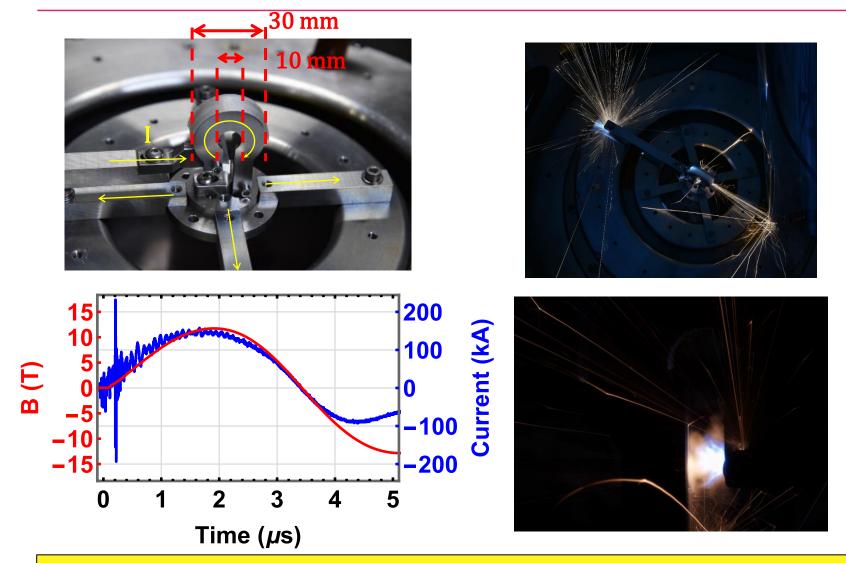
V. Borisov, etc., Proc. SPIE 6611, Laser Optics 2006: High-Power Gas Lasers, 66110B (12 April 2007)

## EUV light characteristics will be measured.


- Two steps of the development:
  - (1) Studies the plasma plume.
  - (2) Studies the theta pinch.




- Characteristics of the initial plasma plume will be measured.
- Plasma density, temperature before and after compression will be measured.
- EUV light characteristic will be measured.
  - Intensity
  - Pulse width
  - Spectrum
  - Uniformity
  - .....


# Supersonic gas puff will be generated by using convergent-divergent nozzle







#### Driving the coil is pretty exciting

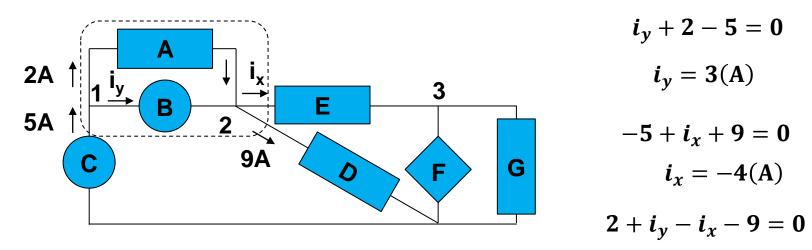


• The platform can be used to study Magnetized Target Fusion (MTF).

### Outlines



- Introduction to pulsed-power system
- Review of circuit analysis
- Static and dynamic breakdown strength of dielectric materials
  - Gas Townsend discharge (avalanche breakdown), Paschen's curve
  - Liquid
  - Solid
- Energy storage
  - Pulse discharge capacitors
  - Marx generators
  - Inductive energy storage


### Kirchhoff's current law

At any instant in time, the algebraic sum of all currents leaving any ٠ closed surface is zero.

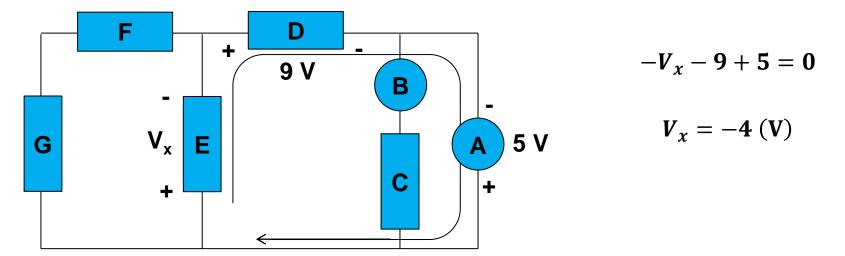
 $i_1 + i_2 + \ldots + i_N = 0$ 

or in abbreviated notation:

 $\sum_{k=1}^{N} i_{k} = 0$ where  $i_k$  is the k<sup>th</sup> current of the N currents leaving the closed surfaces.





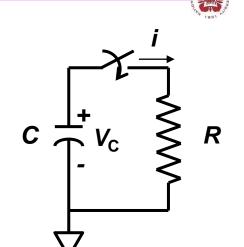

 At any instant in time, the algebraic sum of all voltage drops taken around any closed path is zero.

k=1

$$V_1 + V_2 + \dots + V_N = \mathbf{0}$$
$$\sum_{k=0}^{N} V_k = \mathbf{0}$$

or in abbreviated notation:

where  $V_k$  is the voltage drop, taken in the direction of the path along the k<sup>th</sup> segment of the N segments in the closed path.





#### **Source-free RC circuit**

- Assuming that the capacitor is fully charged to V<sub>0</sub>.
- At t=0<sup>+</sup>, the switch is closed.

$$V_{C} - iR = 0 \qquad i = \frac{dQ}{dt} = -C\frac{dV_{C}}{dt}$$
$$V_{C} + RC\frac{dV_{C}}{dt} = 0 \qquad \frac{dV_{C}}{dt} + \frac{1}{RC}V_{C} = 0$$
$$\int_{V_{o}}^{V_{C}(t)} \frac{1}{V_{C}} dV_{C} = -\frac{1}{RC} \int_{0}^{t} dt$$

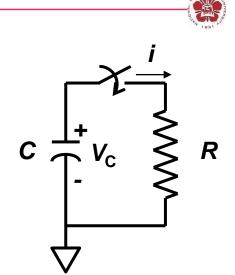
$$\ln\left(\frac{V_{C}(t)}{V_{o}}\right) = -\frac{t}{RC}$$
$$V_{C}(t) = V_{o}e^{-t/RC} \equiv V_{o}e^{-t/\tau_{C}} \qquad \tau_{C} \equiv RC$$

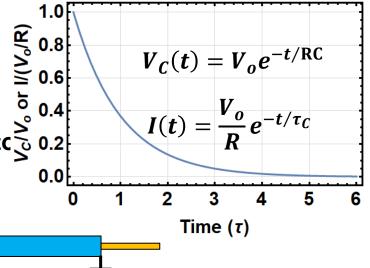




$$I(t) = -C \frac{dV_C}{dt} = -V_o C \left(-\frac{1}{\tau_C}\right) e^{-t/\tau_C} = \frac{V_o}{R} e^{-t/\tau_C}$$

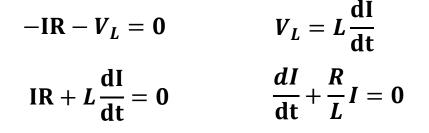
## Bleeder resistors dissipate energy in the capacitor for safety

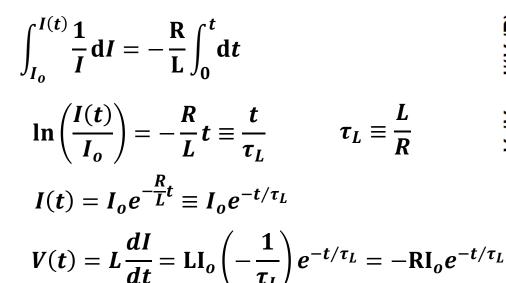

• Example 1:

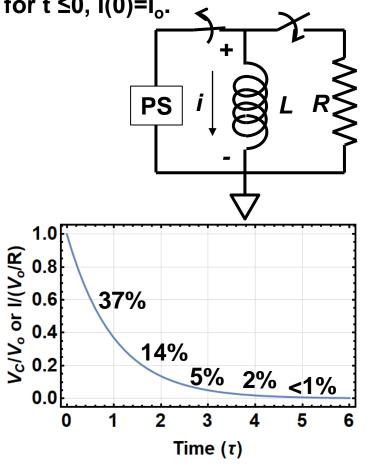

 $V_o$ =50 kV , C=1  $\mu$ F, V≤ 10 V is safe.

If the bleeder resistor takes 15 mins to dissipate energy in the capacitor, then

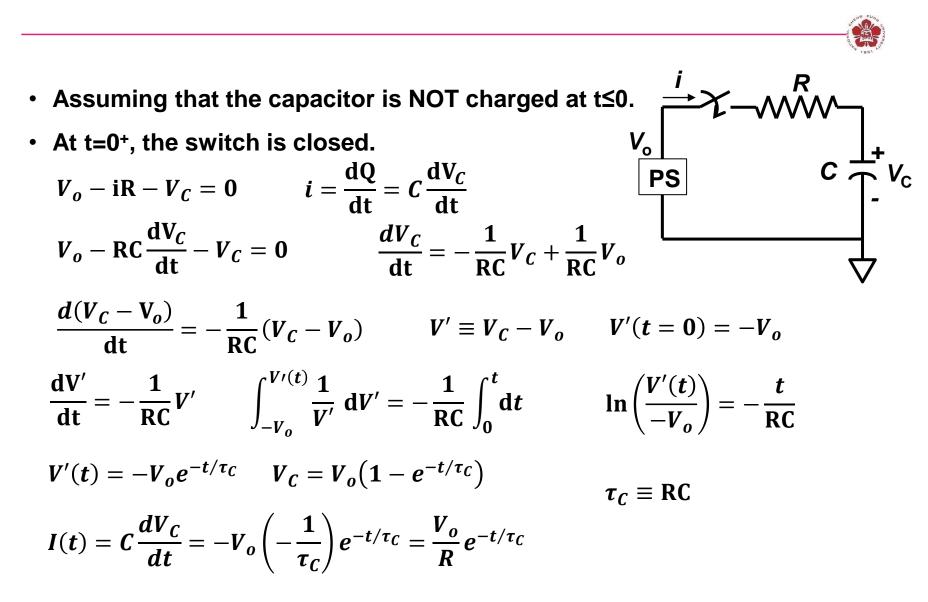
$$10 = 50 \mathrm{k} \operatorname{Exp} \left( -\frac{15 \times 60}{R \times 10^{-6}} \right) \qquad R = 10 \mathrm{M}\Omega$$


- Example 2: SOP for working on high voltage system.
  - 1<sup>st</sup> chicken stick with a large resistors is needed to dissipate the energy in the capacitor slowly first.
  - 2<sup>nd</sup> chicken stick that ground the capacite 0.2
     is needed after most of the energy is 0.0
     dumped.



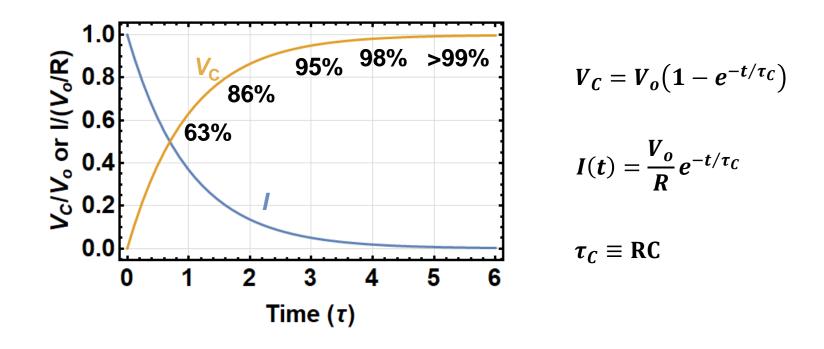




#### Source-free RL circuit


- Assuming that the current is at steady state for  $t \le 0$ ,  $I(0)=I_0$ .
- At t=0<sup>+</sup>, the switch is opened/closed.



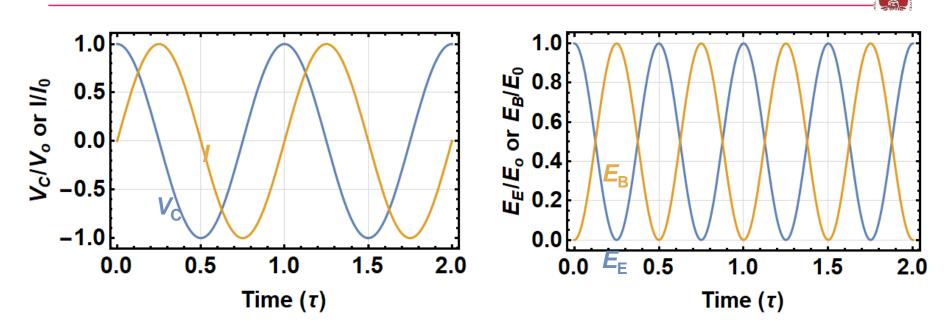




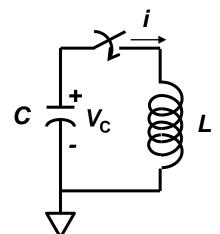

### **Charging of a capacitor**



## The capacitor is almost fully charged after 5 time constant







## LC oscillation

- Assuming that the capacitor is fully charged to  $V_0$ , I(0)=0.
- At t=0<sup>+</sup>, the switch is closed. ٠  $V_C - V_L = 0$   $i = \frac{dQ}{dt} = -C\frac{dV_C}{dt}$   $V_L = L\frac{di}{dt} = -LC\frac{d^2V_C}{dt^2}$   $C \int_{-}^{+} V_C$  $\frac{d^2 V_c}{dt^2} + \frac{1}{\Gamma C} V_c = 0$  $V_{c}(t) = \alpha \sin(\omega t) + \beta \cos(\omega t)$   $\omega \equiv \frac{1}{\sqrt{1}c}$  $i = -C(\alpha\omega\cos(\omega t) - \beta\omega\sin(\omega t))$  $i(t=0)=0=-C\alpha\omega$   $\alpha=0$  $V_{\mathcal{C}}(t=0) = V_{\mathcal{O}} = \beta$  $V_{C} = V_{o}\cos(\omega t)$  $i = \frac{V_o}{\sqrt{L/C}}\sin(\omega t)$

## Energy is oscillating between the capacitor and the inductor



$$V_{C} = V_{o}\cos(\omega t) \qquad \omega \equiv \frac{1}{\sqrt{LC}} \qquad E_{E} = \frac{1}{2}CV_{C}^{2}$$
$$i = \frac{V_{o}}{\sqrt{L/C}}\sin(\omega t) \qquad E_{B} = \frac{1}{2}Li^{2}$$



#### **Series RLC circuit**

•

- Assuming that the capacitor is fully charged to  $V_0$ , I(0)=0.
  - At t=0<sup>+</sup>, the switch is closed.  $V_C - iR - V_L = 0$   $i = \frac{dQ}{dt} = -C\frac{dV_C}{dt}$  $V_L = L \frac{\mathrm{di}}{\mathrm{dt}} = -\mathrm{LC} \frac{\mathrm{d}^2 V_C}{\mathrm{dt}^2}$  $\frac{d^2 V_C}{dt^2} + \frac{R}{L} \frac{dV_C}{dt} + \frac{1}{LC} V_c = 0$  $D^2 + \frac{R}{L}D + \frac{1}{LC} = 0$   $D = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$  $V_{C} = \exp\left(-\frac{R}{2L}t\right) \left| \alpha \exp\left(\sqrt{\left(\frac{R}{2L}\right)^{2} - \frac{1}{LC}t}\right) + \beta \exp\left(-\sqrt{\left(\frac{R}{2L}\right)^{2} - \frac{1}{LC}t}\right) \right|$

### **Underdamped condition**

$$\begin{aligned} \left(\frac{R}{2L}\right)^2 &- \frac{1}{LC} < 0\\ V_C &= \exp\left(-\frac{R}{2L}t\right) \left[ \alpha \exp\left(i\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}t\right) + \beta \exp\left(-i\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}t\right) \right]\\ V_C &= \exp\left(-\frac{R}{2L}t\right) \left[ \alpha \sin\left(\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}t\right) + \beta \cos\left(\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}t\right) \right]\\ V_C &= \exp\left(-\frac{R}{2L}t\right) \left[ \alpha \cos(\omega t) + \beta \sin(\omega t) \right] \qquad \omega \equiv \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}\\ V_C(0) &= \alpha = V_o \qquad V_C(t) = \exp\left(-\frac{R}{2L}t\right) \left[ V_o \cos(\omega t) + \beta \sin(\omega t) \right]\\ i &= -C\frac{dV_C}{dt} = \left[ -\frac{R}{2L}\exp\left(-\frac{R}{2L}t\right) \left( V_o \cos(\omega t) + \beta \sin(\omega t) \right) \\ &+ \exp\left(-\frac{R}{2L}t\right) \left( -V_o \omega \sin(\omega t) + \beta V_o \omega \cos(\omega t) \right) \right] \end{aligned}$$

### **Underdamped condition**

$$I(0) = -C\left(-\frac{R}{2L}V_o + \beta\omega\right) = 0 \qquad \beta = \frac{R}{2L}\frac{V_o}{\omega} = V_0\frac{R/2L}{\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}} = \frac{V_o}{\sqrt{\frac{4L}{R^2C} - 1}}$$

$$I = -C\frac{dV_C}{dt} = \left[-\frac{R}{2L}\exp\left(-\frac{R}{2L}t\right)\left(V_o\cos(\omega t) + \frac{R}{2L}\frac{V_o}{\omega}\sin(\omega t)\right) + \exp\left(-\frac{R}{2L}t\right)\left(-V_o\omega\sin(\omega t) + \frac{R}{2L}\frac{V_o}{\omega}\omega\cos(\omega t)\right)\right]$$

$$i(t) = \frac{V_o}{\sqrt{\frac{L}{C} - \left(\frac{R}{2}\right)^2}}\exp\left(-\frac{R}{2L}t\right)\sin(\omega t)$$

$$V_{C}(t) = V_{o} \exp\left(-\frac{R}{2L}t\right) \left[\cos(\omega t) + \frac{R/2L}{\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^{2}}}\sin(\omega t)\right]$$

### **Overdamped condition**

$$\begin{aligned} \left(\frac{R}{2L}\right)^2 &- \frac{1}{LC} > 0 \\ V_C &= \exp\left(-\frac{R}{2L}t\right) \left[\alpha \exp\left(\sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}t\right) + \beta \exp\left(-\sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}t\right)\right] \\ V_C &= \exp\left(-\frac{R}{2L}t\right) \left[\alpha \exp(\gamma t) + \beta \exp(-\gamma t)\right] \qquad \gamma \equiv \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}} \\ V_C(t=0) &= V_0 = \alpha + \beta \\ i &= -C\frac{dV_C}{dt} = -C\left\{-\frac{R}{2L}\exp\left(-\frac{R}{2L}t\right) \left[\alpha \exp(\gamma t) + \beta \exp(-\gamma t)\right] \\ &+ \exp\left(-\frac{R}{2L}t\right) \left[\alpha \gamma \exp(\gamma t) - \beta \gamma \exp(-\gamma t)\right]\right\} \end{aligned}$$

### **Overdamped condition**

$$\dot{a}(\mathbf{0}) = -C\left[-\frac{R}{2L}(\alpha + \beta) + (\alpha\gamma - \beta\gamma)\right] = \mathbf{0}$$
$$\alpha\left(\gamma - \frac{R}{2L}\right) - \beta\left(\gamma + \frac{R}{2L}\right) = \mathbf{0} \qquad \alpha = \frac{\left(\gamma + \frac{R}{2L}\right)}{\left(\gamma - \frac{R}{2L}\right)}\beta \qquad V_0 = \alpha + \beta$$

$$\beta \left[ 1 + \frac{\left(\gamma + \frac{R}{2L}\right)}{\left(\gamma - \frac{R}{2L}\right)} \right] = V_o \qquad \beta = \frac{V_o}{2} \left( 1 - \frac{R/2L}{\gamma} \right) \qquad \alpha = \frac{V_o}{2} \left( 1 + \frac{R/2L}{\gamma} \right)$$

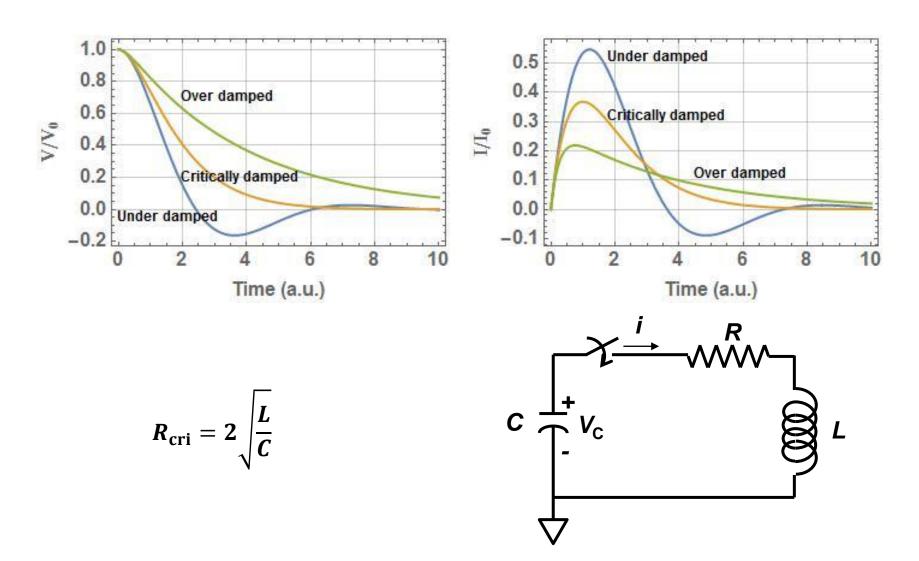
$$V_{C} = \frac{V_{o}}{2} \exp\left(-\frac{R}{2L}t\right) \left[\left(1 + \frac{R/2L}{\gamma}\right) \exp(\gamma t) + \left(1 - \frac{R/2L}{\gamma}\right) \exp(-\gamma t)\right]$$

$$i = \frac{V_o}{2\gamma} \frac{1}{L} \exp\left(-\frac{R}{2L}t\right) \left[\exp(\gamma t) - \exp(-\gamma t)\right] \qquad \gamma \equiv \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

#### **Critically damped condition**



$$\left(\frac{R}{2L}\right)^2 - \frac{1}{LC} = 0 \qquad \qquad R_{\rm cri} = 2\sqrt{\frac{L}{C}}$$


$$V_{\mathcal{C}} = (\alpha + \beta t) \exp\left(-\frac{R}{2L}t\right)$$
  $V_{\mathcal{C}} = (V_o + \beta t) \exp\left(-\frac{R}{2L}t\right)$   $V_{\mathcal{C}}(0) = V_0 = \alpha$ 

$$i = -C \frac{dV_C}{dt} = -C \left(\beta \exp\left(-\frac{R}{2L}t\right) - \frac{R}{2L}(V_o + \beta t) \exp\left(-\frac{R}{2L}t\right)\right)$$
$$i(0) = -C \left(\beta - \frac{R}{2L}V_o\right) = 0 \qquad \beta = \frac{R}{2L}V_o$$

$$V = V_o \left( 1 + \frac{R}{2L} t \right) \exp \left( -\frac{R}{2L} t \right)$$
$$i = \frac{V_o}{L} \operatorname{texp} \left( -\frac{R}{2L} t \right)$$

# Varying R can move the discharge currents into different regime



